9:enago

1. Introduction

In physics and mathematics, Green'Green's theorem gives indicates the relationship between a line integral around a simple closed curve C and a double integral over the planeplane region D bounded by C . This theorem is an application of the fundamental Theoremtheorem of calculus for integrating a certain combinations of derivatives over a plane. It This theorem can be proven-easily proven for rectangular and triangular regions. As Bothboth sides of it'sits equality are finitely additive and almost all planar regions can be divided into triangles and rectangles, so that the result holds for any planar-region practically all of, which can be divided in to triangles and rectangles. This proves the theorem for reasonably shaped regions. It's-Its generalization to the non-planar surfaces (-proved directly proved from it by using the

Comment [A1]: Providing concise and clear sentences often aids clarity and enhances readability

For a rectangle: By Using the ordinary fundamental theorem of calculus, we have;

[^0]
9:enago

$$
\int_{x=a}^{x=b y=d} \int_{y=c} \frac{\partial v_{2}(x, y)}{\partial x}-\frac{\partial v_{1}(x, y)}{\partial y} d y d x=\int_{y=c}^{y=d}\left(v_{2}(b, y)-v_{2}(a, y)\right) d y-\int_{x=a}^{x=b}\left(v_{1}(x, d)-v_{1}(x, c)\right) d x
$$

For a right triangle: $£ \underline{F}$ or convenience, we choose \underline{a} triangle bounded by line $x=0, y=0$, and $\frac{x}{a}+\frac{y}{b}=1$.

We similarly getobtain:

$$
\begin{aligned}
& \int_{y=0}^{y=b x=a-y a / b} \int_{x=0}^{\partial v_{2}(x, y)} \\
& \partial x
\end{aligned} d x d y-\int_{x=0}^{x=a} \int_{y=0}^{y=b-x b / a} \frac{\partial v_{1}(x, y)}{\partial y} d y d x .
$$

Rearrangement of right hand side gives the Theorem for rectangles and right triangles is obtained by rearranging the right hand side of the equation.

It means that Thus,; for R_{2} a rectangle or right triangle in the $x-y$ plane; (for which $d \mathbf{S}=\mathrm{dSk}$), we have

$$
\iint_{\mathrm{R}} \bar{\nabla} \times \overline{\mathrm{v}} \cdot \mathrm{~d} \overline{\mathrm{~S}}=\oint_{\delta \mathrm{R}} \overline{\mathrm{v}} \bullet \mathrm{~d} \overline{\mathrm{l}}
$$

Both sides of this equation is finiteare finitely additive-: that isi.e., if we evaluate either side overwe take two disjoint regions, and evaluate either one over both, you get the result will be equal to the sum of their valuesthe result of separate evaluations on the two regions-separate .. This is true even if the regions share a common boundary $\|$ because the line integrals will cancel out over the common boundary which that ceases to be a boundary. not separated by a comma.

The result follows from additivity for any region that can be broken updivided into rectangles and triangles, which accounts for most regions we will encounter.

[^1]
[^0]: All material in this document is the intellectual property of Crimson Interactive Pvt. Ltd. The use of information and content in this document in whole or in part is forbidden unless express permission has been given in writing by Crimson Interactive Pvt. Ltd.
 $\underline{w w w . e n a g o . c o m ~ \| ~ w w w . e n a g o . j p ~ \mid ~ w w w . e n a g o . c o m . t r ~} \| \underline{w w w . e n a g o . c o m . b r}|\underline{w w w . e n a g o . d e}| \underline{w w w . e n a g o . t w ~}$ www.enago.cn | www.enago.co.kr|www.enago.ru

[^1]: All material in this document is the intellectual property of Crimson Interactive Pvt. Ltd. The use of information and content in this document in whole or in part is forbidden unless express permission has been given in writing by Crimson Interactive Pvt. Ltd.
 www.enago.com \| www.enago.jp \| www.enago.com.tr \| www.enago.com.br \| www.enago.de \| www.enago.tw www.enago.cn | www.enago.co.kr|www.enago.ru

